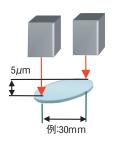
レーザオートコリメータ テクニカルガイド【測定原理】

■レーザオートコリメータとは

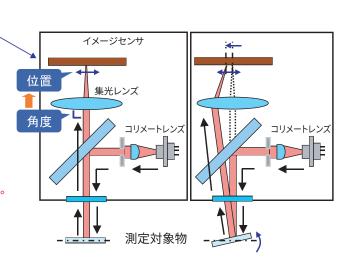
レーザオートコリメータ方式


- ・1点で瞬間、角度測定!
- ・θxθyの2次元座標表示
- ・W.D.が長い(自由度高い)
- ・高分解能 1秒

尚、測定対象は、ミラー・ガラス面などの正反射に限ります。 樹脂・金属など散乱反射体は、◆P.5D-003をご参照ください。

測長方式

測長センサを2ヶ使用し、2点間の高さの差から計算



 5μ mの変化を捉えても、 分解能は、 θ =Arctan (0.005/30) = 34秒

■角度測定の原理

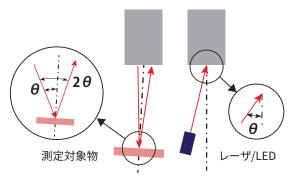
レーザビームを集光レンズに入射すると、その入射角度に応じて焦点面上の位置情報に変換されます。この原理を応用し、測定対象物へレーザビームを照射し、その反射光をイメージセンサ上に集光させることで、測定対象物の傾き量を測定します。

左図:測定対象物が照射ビームに対し垂直の場合は、反射光が垂直に戻り、集光レンズにより集光された光はイメージセンサ中心となります。

右図:測定対象物が傾いた場合、反射光が左に傾き、集光位 置も左方向へと移動します。

この差分を測る事で傾きが判ります。

■特殊な使い方:外部光源入射測定

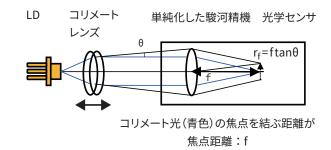

反射角度測定(内部光源を利用した測定)

オートコリメータは通常、内部の半導体レーザ(LD)を利用した 反射で測定します。

測定対象物が θ 度傾いた場合(左下図)、反射光は 2θ 度の角度で戻ってきます。このときにオートコリメータが表示している角度は、測定対象物の傾き角度 θ 度です。

外部光源入射角度測定

内部の半導体レーザ (LD) をOFFにして、測定対象物側の光源から出射されるレーザ光の傾きを測定することができます(右下図)。このときに表示している角度は θ 度です。

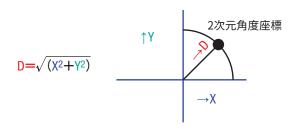


■ダイバージェンス測定について

Smart LACでは、ISO 11146-2:2005 に則り、レンズを用いてレンズの焦点位置でのビーム半径Rより、

 $tan\theta = r_f/f$

としてθを求める方法を採用しています。


ビームダイバージェンス θ のビーム(作図より r_f =f tan θ となる)

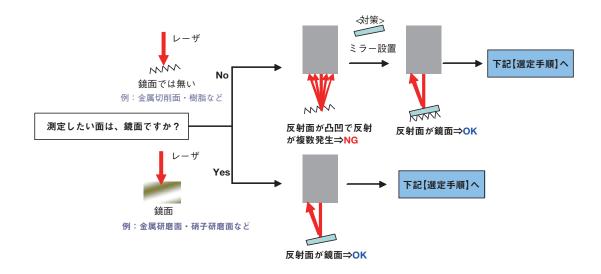
■角度表示について

検出器上に結像したスポット位置は、2次元の角度座標として表示されます。

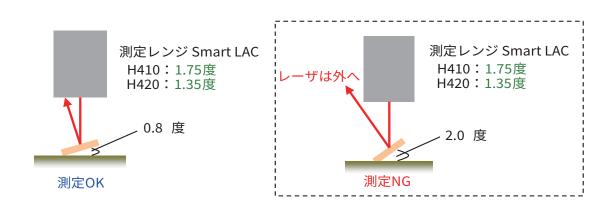
下図の様にX方向角度成分、Y方向角度成分及び、スポット方向の角度を表示します。

また、角度の単位はdeg,rad,secから選べます。

■視野レンジ

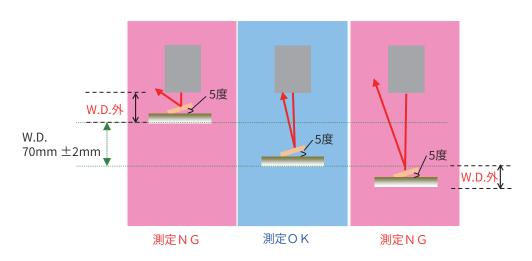

レーザオートコリメータの測定レンジ(視野)は、センサヘッドの光学系の設計値で決まっています。

基本的に測定可能なレンジはW.D.(ワーキングディスタンス) により制限されます。


一般的に距離が短いほど広くなり、長くなるほど小さくなります。詳細は各機種のスペックを参照ください。

レーザオートコリメータテクニカルガイド【事前確認】

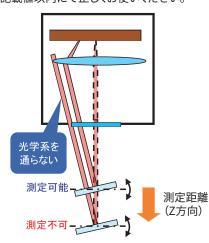
【レーザオートコリメータ使用前チェック】


【測定レンジ確認】

機種別測定レンジ、W.D.

	Smart LAC H410	Smart LAC H420	Smart W-LAC H900	Smart W-LAC H920
測角範囲	±1.75°	±1.35°	±0.17~0.9°	±5.0°
W.D.	0∼300mm	0∼300mm	150mm or 230mm	70mm

【対象物測定距離】H900/H920シリーズ



注:H920の場合、W.D.が70mm±2mmを外れると計測が出来なくなります。

レーザオートコリメータ テクニカルガイド【ご注意】

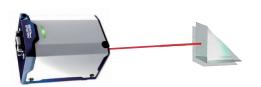
■対象物測定距離

対象物測定可能距離以上に離して使用すると、反射光が光学 開口の外を通り、測定レンジが全域確保できなくなります。 カタログ記載値以内にて正しくお使いください。

■レーザクラス


クラス1	合理的に予見可能な運転状況下で安全である レーザ。
クラス1M	合理的に予見可能な運転状況下で安全である波 長範囲302.5~4000nmのレーザ。ただし光学機 器を使用して観察する場合は危険とみなされる。
クラス2	まばたきを含む回避行動によって目が保護される 波長範囲400~700nm (可視光) のレーザ。
クラス2M	まばたきを含む回避行動によって目が保護される 波長範囲400~700nm (可視光) のレーザ。ただし 光学機器を使用して観察する場合は危険とみな される。
クラス3R	直接ビームを観察することは潜在的に危険とされる波長範囲302.5nm~106nmのレーザ。可視光 (400~700nm)ではクラス2の5倍以内。可視以外の波長はクラス1の5倍以内。
クラス3B	直接ビームを観察することは危険とされるレーザ。ただし拡散反射光の場合は通常安全であると みなされる。
クラス4	危険な拡散反射を引き起こしえるレーザ。これらは、皮膚損傷を起こすだけでなく、火災発生の危険もあり得る。

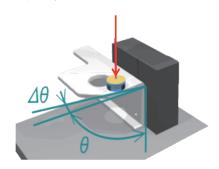
出典元:JIS C 6802 抜粋 発行元:財団法人日本規格協会


レーザオートコリメータ テクニカルガイド【測定テクニック】

■直角プリズムの測定

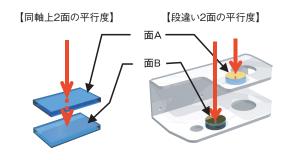
直角(90°)の測定は、直角 プリズムの垂直面を吸着 し、水平となる面をレーザ オートコリメータで測定し ます。

レーザオートコリメータ本体の設置方向に制限はありません。 水平置きすれば、直角プリズムの垂直面を測定できます。

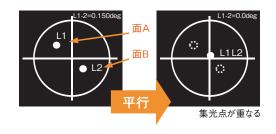


■散乱反射体(樹脂・金属)の測定

レーザオートコリメータは散乱・湾曲表面は反射光を集光できないため、直接測定はできません。



パラレルミラーを測定面に載せる事で、測定対象物の傾きを捉えることができます。

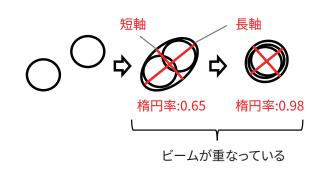


■2面の平行度同時測定

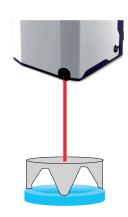
レーザオートコリメータは、測定物の高さや位置が違っても、角度の比較が可能です。

《左図》1本のレーザビームを透過させ、 同軸上の2面間の平行度を測定 《右図》2ビーム分岐アダプタ(オプション)を使い、 高さも位置も違う2平面の平行度を測定 いずれも、平行になると、反射スポットは1点に重なります。

■ビーム重なり判定機能


光点が分離出来ていればそれぞれで角度が求められますが、光点が重なると角度は1つしか求められません。(1つの光点として計算される)

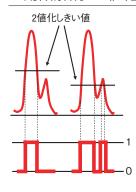
このように、角度だけでは光点の位置を重ねるような調整が難しい場合に、楕円率(※)を測定することでビームの重なり判定を行う機能が有効です。


楕円率が大きければ、ビームの重なり具合が大きいと 判断できます。(最大1)

※楕円率は楕円の長軸と短軸を使って次の式で計算 されます。

楕円率 = 短軸/長軸

■レンズの測定



課題:

コバ面が粗く、鏡面ではない場合 《対策》

レンズコバ面を受ける治具(上面を鏡面加工)を介せば、レンズの姿勢を捉えることができます。

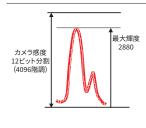
■用語解説:2値化しきい値

オートコリメータ光学系で検出した光をグレースケールイメージからバイナリーイメージへ変換するための基準です。


2値化処理とは、この基準を輝度値を超える画素を1(白)、それ以外を0(黒)にする画像処理手法です。この基準(白とするための最小限の明るさ)を2値化しきい値と呼びます。

※備考:面積重心モードで設定します。

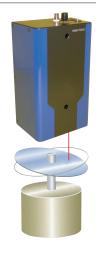
■重心解析のコツ


レンズのコバ面など平坦度の低い面のチルトを測定する場合、 輝度重心モードが適しています。

面積重心モードと比べ、測定リニアリティーや測定再現性が飛躍的に向上します。

輝度重心モードを使用する場合、測定精度を高めるため、輝度 バーを確認しながら、適正な(輝度を大きく、かつ飽和しない) 範囲で使用してください。

■用語解説:4096階調


オートコリメータ光学系で検出した光は、12ビット(4096 階調)のグレースケールイ メージで表現されます。

輝度重心解析はグレースケール イメージの重心を演算します。 2値化処理による面積重心解 析と比較し、正確な解析を行 うことができます。

※備考:輝度重心モードでは ベースノイズを除去するた めのしきい値を設定する必 要があります。

■精密モータや光ディスクドライブのフレ測定

H900シリーズでは、精密モータや光ディスクドライブの面ブレ解析を行うことが出来ます。

フレ測定 H900シリーズモータモード

特長

高速なサンプリングにより測定時間が非常に短い 重心座標の数値化により正確な面ぶれ計測ができる

レーザオートコリメータテクニカルガイド【検出器の違い】

■Smart LAC H410/H420シリーズの違い

検出器

検出器	製品
イメージセンサ	Smart LACシリーズ H410/H420
PSD	Smart W-LACシリーズ H900/H920

PSD Position Sensitive Detector

フォトダイオードの表面抵抗を利用した非分割型位置センサ

長所

連続電気信号 (X/Y座標)が得られる為位置分解能、応答性に優れる

短所

反射SPOTが複数点あっても識別できない (マルチスポット測定が不可能)

ご要望・お問い合わせ

当社製品、サポートに関するご要望・お問い合わせはこちらまで。

- ・ 光センサ製品の図面が欲しい
- 製品の価格を知りたい
- ・光センサ製品の取扱説明書(日本語・英語)が欲しい
- HPU-1000のサンプルプログラムが欲しい

info@suruga-g.co.jp

にご連絡ください。

- 光センサ製品のデモ機を見たい/借りたい
 - ①御社名
 - ②お名前
 - ③製品型式
 - ④ご希望の日程
 - ⑤ご用途
- ①~⑤をご記入の上

info@suruga-g.co.jp

にご連絡ください。

- ※デモ機のお貸出期間は約2週間です。
- ・製品の校正を依頼したい
- •検査書と製品を一緒に出荷して欲しい

【検査証明書発行依頼書】にご記入の上

info@suruga-g.co.jp

にご連絡ください。

- ※校正費用は、別途発生いたします。
- ※検査証明書と製品の同梱出荷をご希望の場合は、 ご注文前にご連絡をお願いします。

【駿河精機サービスサイト】はこちら

https://marketing.surugaseiki.com/